RAMAKRISHNA MISSION VIDYAMANDIRA

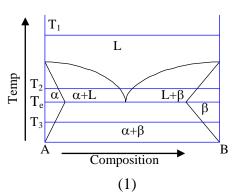
(Residential Autonomous College affiliated to University of Calcutta)

SECOND YEAR [2018-21]

B.A./B.Sc. THIRD SEMESTER (July – December) 2019 Mid-Semester Examination, September 2019

Date : 16/09/2019

Answer any three questions:


INDUSTRIAL CHEMISTRY (Honours)

Time : 1 pm – 3 pm Paper: III Full Marks : 50

[Use a separate Answer Book for each unit] <u>Unit-I</u>

Answer any four questions:		$[4 \times 5]$
a)	Define lattice, basis and crystal.	
b)	What are the basis vectors?	
c)	Differentiate between 'crystalline' and 'amorphous' materials.	[2+1+2]
a)	Define 'Brawal's' lattice. How many of then are possible in 3D?	
b)	Define 'packing fraction'. Calculate the maximum packing fraction for any cubic system.	[2+3]
a)	In a simple cubic system, show the following plane and directions.	
	i) Planes: (101) ; $(\overline{1}\overline{1}0)$, (022) .	
	ii) Directions: $[121]$, $[\overline{1}0\overline{1}]$, $[0\overline{2}1]$.	
b)	Copper has an atomic radius of 0.128 nm, an FCC crystal structure and atomic weight of 63.5 g/mol. Compute its theoretical density.	[3+2]
a)	Establish Bragg's diffraction condition for crystals.	
b)	A beam of x-rays have wavelength 0.071 nm is diffracted by (110) plane off rock salt	
	(FCC) with lattice constant of 0.28 nm. Find the glancing angle (θ) for the second order	
	diffraction.	[2+3]
a)	Classify the different kind of materials with examples.	[3]
b)	The average degrees of polymerization of PVC is 2500. Calculate its average molecular weight in g/mol.	[2]
a)	Write a note on nanostructure materials.	[2]
b)	The volume fraction of epoxy resin in a glass fiber/epoxy composite is 0.48. The density of glass fiber and composite are 2540 kg/m ³ and 1950 kg/m ³ respectively. The weight fraction of fiber in the coomposite is	[3]
<u>Unit-II</u>		
	 a) b) c) a) b) a) b) a) b) 	 a) Define lattice, basis and crystal. b) What are the basis vectors? c) Differentiate between 'crystalline' and 'amorphous' materials. a) Define 'Brawal's' lattice. How many of then are possible in 3D? b) Define 'packing fraction'. Calculate the maximum packing fraction for any cubic system. a) In a simple cubic system, show the following plane and directions. i) Planes: (101); (110), (022). ii) Directions: [121], [101], [021]. b) Copper has an atomic radius of 0.128 nm, an FCC crystal structure and atomic weight of 63.5 g/mol. Compute its theoretical density. a) Establish Bragg's diffraction condition for crystals. b) A beam of x-rays have wavelength 0.071 nm is diffracted by (110) plane off rock salt (FCC) with lattice constant of 0.28 nm. Find the glancing angle (θ) for the second order diffraction. a) Classify the different kind of materials with examples. b) The average degrees of polymerization of PVC is 2500. Calculate its average molecular weight in g/mol. a) Write a note on nanostructure materials. b) The volume fraction of epoxy resin in a glass fiber/epoxy composite is 0.48. The density of glass fiber and composite are 2540 kg/m³ and 1950 kg/m³ respectively. The weight fraction of fiber in the coomposite is

7. Draw free energy versus composition relationship for T_1 , T_2 T_e & T_3 temperature for below eutectic system?

 $[3 \times 5]$

a) Find the fraction of proeutectoid $\alpha(f_{pro \alpha})$ and fraction of pearlite $(f_{pearlite})$ for mild steel 8. of 0.2 % C. b) Describe 'Tabling' process. [2.5+2.5]What are the advantages of Imperials smelting process. 9. b) Describe Hydrometallurgical Extraction of Zinc. [2.5+2.5]10. a) How refined lead is obtained from Lead Bullion. b) Describe Parke's process for desilverzation of lead. [3+2]What are the main features of WORCRA process. 11. a) b) Describe the Blister formation stage of copper extraction process. [2+3]**Unit-III** Answer **any three** questions: $[3 \times 5]$ Write down the energy expression for simple harmonic oscillator. Calculate the difference in energy between two successive levels. [1+2+2]13. a) What is the essential condition for a light-induced vibrational transition? b) What is the selection rule for a light-induced vibrational transition? c) Calculate the frequency of light which induces a vibrational transition in terms of the frequency of vibration for a simple harmonic oscillator. [1+1+3]14. a) Write down the energy expression for a rigid rotor. b) Calculate the difference in energy of two successive levels. c) How this energy gap between successive levels change with quantum number 'J'? [1+2+2]15. a) Derive the expression for the rotational state which hosts the largest fraction of population. b) Find out the same for a vibrational state. [4+1]16. a) What is the essential condition for a light-induced rotational transition? b) What is the selection rule for a light-induced rotational transition? Calculate the frequency of light which induces a rotational transition in terms of the parameters of rotational motion. [2+1+2]

____×___